先前提及过。

    在微观物理中。

    基本粒子可以分成四类:

    夸克,轻子,规范玻色子,以及Higgs粒子。

    而夸克由于夸克静闭的缘故,是没法单独存在的。

    因此在微观领域,夸克主要是成双成三的存在:

    比如一个正夸克和一个反夸克构成一个介子。

    或者三個夸克或者三个反夸克构成一个重子。

    重子和介子统称为强子,比如我们熟知的质子和中子就属于重子。

    除此以外。

    超子也是重子的一种。

    它的特殊之处是至少含有一个奇异夸克,  可以通过研究超子来理解重子的相互作用方式。

    目前发现的超子种类有很多。

    比如Σ-超子、Ξ-超子,Ω-超子等等。

    没错。

    想必有些同学已经想起来了。

    《异世界征服手册》中,兔子们用来轰开青城山天宫秘境的粒子束,使用的就是Ω-超子。

    而不久前赵政国院士他们观测到的Λ超子,同样也是属于以上的范畴。

    看到这里。

    很多人可能有些懵圈了:

    虽然这些内容看起来很好理解,但Λ超子到底有啥具体意义呢?

    Λ超子理论上的意义其实有很多。

    比如它有可能协助发现传说中的第五种力。

    比如对暗物质与暗能量探测有帮助。

    又甚至能够研究中子星等等。

    而在现实中。

    最直接的影响就是你我用到的手机。

    目前所有的手机都会用到量子理论的知识,因为手机大部分核心部件都用到半导体,  半导体材料的性能要根据量子力学进行推算优化。

    例如PN结当中存在一个gap。

    按照通俗的理解就是,  电势能大于电子的动能,正常理解下电子是不可能穿过这个gap的。

    但是在量子力学的范畴下,允许电子有一定的概率发生跃迁,这个现象叫电子的隧穿。

    电子隧道显微镜利用的就是这个原理。可以看到材料表面的势能起伏。

    进而推断材料表面结构,最终进行半导体研发。

    比如目前三星已经卖了一款搭载光量子芯片的手机Galaxy  A  Quantum,也就卖五百多刀,可惜没炸过。

    光量子芯片用来产生量子随机数,保证加密算法在物理上绝对安全,这也算是未来的一类趋势。

    因此微观的粒子研究其实和我们现实是息息相关的,只是由于最终产品是一个完整态的缘故,内中的很多技术大家存在一定的信息壁垒罢了。

    而比起其他超子。

    Λ超子还要更为特殊一些。

    它是一类非常特殊的超子,它在核物质中的单粒子位阱深度是目前所有已知微粒中最深的。

    说句人话....错了,通俗点的话。

    它可以算是可控核聚变中非常关键的一道基础。

    因此目前各国对它的重视度都非常高,  几大头部国家一年的相关经费都是一到两个亿起步。

    视线在回归原处。

    赵院士他们的这次观测徐云倒是有所耳闻,  衰变事例的最大极化度突破了26%,还是目前全球首破。

    也算是个不大不小的新闻了。

    不过要知道。

    在赵院士他们首破之前,  国际上的最大极化度便达到了25%。

    因此他们的首破在概念意义上是要大于实际意义的,  只能领先半个身位的样子。

    但眼下徐云手中的这道公式,  似乎指向的是另一个轨道:

    别忘了。

    二者相近的结合能数字,实际上是徐云将y(xn+1)改成了y(xn+2)后的结果。

    换而言之。

    在y(xn+1)这个轨道上......

    理论上是存在另一个不同量级的Λ超子的。

    想到这里。

    徐云的好奇心愈发浓烈了。

    随后他再次切换到极光系统,将4685Λ超子的编号入了进去。

    片刻过后。

    一堆衰变事例样本出现在了他面前。

    微粒信息不像是其他研究,其自身是不需要太过考虑保密度的。

    因为前端粒子的研究和现代技术之间存在着不小的差异,你很难将某个微粒的发现直接扩展成某种技术,没有太大的保密价值。

    所以在发现了新型微粒或者相关信息后,发现人基本上都会大大方方的将所有信息公开。

    赵政国院士上传的衰变样本一共有37张,分成了六个档案。

    其中标注了不少的衰变参数,外加其他一些鲜为人同学看起来如同天文数字、但实际上却很重要的数据信息。

本章未完,请点击下一页继续阅读》》

章节目录

走进不科学所有内容均来自互联网,书林文学只为原作者新手钓鱼人的小说进行宣传。欢迎各位书友支持新手钓鱼人并收藏走进不科学最新章节